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Outline

* Introduction

* Detectors’ data and detection principles
* Time-domain event classifier (DL CNN)
* Ongoing work



LIGO-Virgo GW astronomy: 2015 - present
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10 binary black hole mergers and 1

binary neutron star merger detected O o s ohs
so far! (arXiv:1811.12907) Time (seconds)

One year of O3: expected tens of binary black hole mergers
and a few binary neutron star mergers.



GWTC-1
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Instrumental glitches as time-frequency maps

Il

‘ (glitch classes Iabe'ad in the Gravjy Spy project)

Deep learning on image data:

* Spectrogram parameters/choice
dependent,

* Extra preparation time and large
data volume.

Time series representation:

* As close as possible to raw data
(minimal manipulation),

* Reduced volume of data.



Network-of-detectors paradigm and beyond

* Transient noise may mimic
the GW signal

— current pipelines use
coincidences in two or more
detectors,

* Single-detector time
marginally exploited (2.7
months in O1+02 — could
contain 3 events)

mmm Calibration:
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Training data: noise and glitches

Three instances of training data: noise, noise+signal, glitch

Glitches and “clean” noise data samples from the last month of LIGO
O1 run (downsampled to 2048 Hz, duration: 4s — 8192 points),
whitened by the amplitude spectral density of the noise.



Training data: “chirp” signals

Randomly selected binary black holes’ system merger
waveforms: my, mo € (8, 16), signal-to-noise p € (15, 45),
added to "clean” noise samples, whitened.



Convolutional Neural Network




Glitches, noises and signals - 1D classification results

Confusion Matrix
* Training data: 1000 instances
x 3 classes,

* Training time: ~10 minutes
for 20 epochs @ Nvidia Tesla
K40XL,

* Accuracy on test data: 0.97




1D Convolutional Neural Network

Layer (type) Output Shape Param #
reshape_1 (Reshape) (None, 8192, 1) 0]
convid_1 (ConviD) (None, 8188, 500) 3000
max_pooling1d_1 (MaxPooling1 (None, 2729, 500) 0]
convid_2 (ConviD) (None, 2725, 250) 625250
convid_3 (ConviD) (None, 2721, 250) 312750
max_pooling1d_2 (MaxPooling1 (None, 907, 250) 0]
convid_4 (ConviD) (None, 903, 150) 187650
global_average_pooling1d_1 ( (None, 150) 0]
dropout_1 (Dropout) (None, 150) 0]
dense_1 (Dense) (None, 3) 453

Total params: 1,129,103
Trainable params: 1,129,103
Non—trainable params: 0



Ongoing work

Having the training data set, we are

* adding features:

* environmental channels (multi-instance learning),
* specific classification for glitches (e.g. using labeled data

from Gravity Spy),
* study causality between time-series (e.g. main GW channel

vs environmental channels),
* DNN compression to decrease the size and latency.

* implementing other ideas for 1D DNN:

* Recurrent Neural Networks (RNN), Long-Short Term
Memory (LSTM) for classification,

* Convolutional Denoising Autoencoders (to denoise
signals/glitches to study their morphology),

* Generative Adversarial Networks for anomaly detection.



Causality studies

Predictive (Granger) causality: adding
a new time-series improves prediction
of the next data-point.

Example Virgo time-frequency glitchgram
(Virgo logbook)

In the context of GW data
characterization and quality:

* Detect cause-effect relation
between auxiliary and main GW

channels,
— Investigate and remove noise
LIGO Hanford horizon drops due to trucks sources and/or characterize and
(Berger 2018) remove glitches from the main

GW channel.



DNN compression

DNN as a parametric model:

p(Dlw) = MY, p(x;lyi, w)

D - data, N x; - input y; - output
pairs, w - parameters weights
with prior p(w)

input layer

hidden layer 1 hidden layer 2

* Minimum description length (MDL)

principle ("best model is the most
compressed”), related to Bayesian
inference

Approximating the posterior
p(w|D = p(D|w)p(w)/p(D) to
minimize a function

L(¢) = + LE

£C

~~ =~
complexity cost  error cost
by optimizing the variational
parameters ¢ with sparsity-inducing
priors to prune nodes/weights.

— ’variational dropout”

— motivation e.g. Louizos et al. 2017

(arXiv:1705.08665).






COST action G2Net (g2net.eu)

Three working groups:

* WG1: ML for GW astronomy,
* WG2: ML for low-frequency seismic measurement,
* WG3: ML for Advanced Control techniques.

You are cordially invited to join! =



Convolutional Denoising AutoEncoder

Input image Reconstructed image

Latent Space
Representation

noise+signal signal




Generative Adversarial Network




