

Telescope and space mission scheduling towards a multi-observatory framework

28th March 2019, Groningen

J. Colomé (IEEC), Á. García-Piquer (IEEC), E. de Ona Wilhelmi (IEEC), D. F. Torres (IEEC), A. Bridger (STFC), J. Lightfoot (STFC), E. Díez (GTD), J. C. Morales (IEEC), I. Ribas (IEEC), F. Vilardell (IEEC)

Outline

STARS framework

- Features
- Perfomance metrics
- Hard and soft constraints
- Optimization algorithms
- Optimization strategies
- Scheduling Applications
 - Single telescope: ARIEL-ESA, CARMENES, TJO
 - Observatory with multiple sites and sub-arrays: CTA
 - Multi-observatory: CTA&SKA, CTAN&S+GW

CLEOPATRA

Connecting Locations of ESFRI Observatories and Partners in Astronomy for Timing and Real-Time Alerts (CLEOPATRA)

Features

- Scheduling Technologies for Autonomous Robotic Systems
- Applied in several space and ground observatories
- Libraries
 - Definition of the survey: objects to be observed, features of the objects
 - Definition of the observatory: location, number of telescopes, type of telescopes
 - Astronomical calculations: object coordinates, object elevation, Sun and Moon position, Moon phase
 - Long- and mid-term schedulers based on Evolutionary Algorithms, and for a short-term scheduler a dispatcher using astronomy-based heuristics

Two sites: Paranal in the South and La Palma in the North

CE XML Generation					00
Parameters Targets Obs	ervatory	CTA	A availability		
Multifacility optimizati strategy	on only master midterm		CTA availability [%]	95	0
Bad weather condition considered	yes		Maximum probability of clouds	0.05	0
Minimum humidity tha allows to observe [%]	4	0	Maximum humidity that allows to observe [%]	95	0
Minimum humidity nee to restart observing [%]	eded 4	0	Maximum humidity needed to restart observing [%]	95	0
Waiting time after humidity conditions allow observing [hh:mm:ss]	00:05:00	× v	Maximum wind that allows to observe [m/s]	35] @
Waiting time after wind conditions allow observing [hh:mm:ss]	00:01:00	× v	Minimum temperature that allows to observe [°]	-10] 🕜
Maximum temperature that allows to observe [°]	e 25	0	Waiting time after temperature conditions allow observing [hh:mm:ss]	00:01:00	
Cancel Save Execute Scheduler Weather configuration					

ICE XML Generation						000
Parameters Targets Observatory						
Observatory Name: ESO	Telescope Details					
Subarrays	Name	S	0			
0 (Main Array) 1		[•			\
2	Longitude [°]	-70.73	0			
	Latitude [°]	-28.74	0			
	Altitude [m]	2168.0	0			
	Follow up	no		Field of view [degrees]	0	0
Manage subarrays	Solar horizon [°]	-20	0	Consider only dark time	yes	
Remove Duplicate Add New Telescopes	Weather database	CHILE_ATMOSCOPE	-			
L		✓ 0				
S		1				
		2				
	Subarrays Assigned					
	\mathbf{X}					
Manage telescopes						
manage teleseppe					<i>.</i>	
Remove Duplicate Add New	Add New Telescope configuration					
Cancel Save Execute Scheduler						

Schedule by Resource

Resource

🔳 Resource 0 📕 Resource 1 🔳 Resource 2 🔳 Resource 3 🔲 Observable period 🔅 Unfavourable weather

Performance metrics

- Observing time optimization
 - The time in the schedule during which the telescope is observing objects should be maximized
- Optimization of scientific return
 - The observation of completed targets should be maximized in order to increase the scientific efficiency of the mission
 - Observation of the priority targets should be promoted
 - Observation deviation to ensure that all targets with the same priority will have a proper share of assigned observing time
 - Observing cadence according to the observation strategy

Optimization algorithms

Optimization process based on AI Algorithms

Optimization strategies

- Off-line → Long-term and Mid-term schedulers
 - Time interval according to hard constraints that can be predicted
- On-line → Short-term scheduler
 - It considers all constraints and adapts the mid-term plan to react to immediate circumstances

Constraint	Long-term	Mid-term	Short-term			
Hard Constraints						
Night	х	х	х			
Elevation	Х	х	х			
Moon influence	х	х	х			
Visibility duration	х	Х	х			
Pointing	х	х	х			
Overlapping		х	х			
Overhead time		Х	х			
Environmental conditions			x			
Soft Constraints						
Observing time		Х	Х			
Observation deviation		Х	Х			
Observing cadence	х					

Outline

PLATO

- STARS framework
 - Features
 - Perfomance metrics
 - Hard and soft constraints
 - Optimization algorithms
 - Optimization strategies
- Scheduling Applications
 - Single telescope: ARIEL-ESA, CARMENES, TJO@OAdM
 - Observatory with multiple sites and sub-arrays: CTA
 - Multi-observatory: CTA&SKA, CTAN&S+GW

Cherenkov Telescope Array

- CTA scheduling conditions
 - Operation tasks
 - Science, calibration, maintenance
 - Observation modes
 - Sub-arrays, compact
 - Convergent/divergent modes
 - Observing time distribution (SB)
 - Two sites (CTAN@ORM / CTAS@Paranal)
 - 20-100 Telescopes/site
 - Independent & coordinated tasks

CTAS&CTAN rendering, Gabriel Pérez Díaz, IAC, SMM

CTA KSP simulations - 10 yr

Completed

Unplanned

Uncompleted

- Two configurations (1/1/2021 to 1/1/2031):
 - Full Array North & South (coordinated) observations)
 - Sub Arrays only in the South

Multi-observatory scheduling

- Science cases: transient events (GRBs, GWs, etc.), surveys
- Problem conditions
 - Each observatory contains various subarrays
 - Each observatory has a role: leader, follower or independent
- Additional Objective
 Additional Objective
 Maximize the simultaneity of observations (maximize coincident observations or minimize the distance between them)

Multi-observatory scheduling

- Strategies
 - Subsidiary observations: leader follower
 - Interactive approach: leader leader
 - Multi-Messenger: random alerts (GW) observed by CTAN&CTAS
- Facilities
 - CTA (CTAN La Palma, Canary Islands; CTAS Chile)
 - SKA (Australia, South Africa) \rightarrow GASKAP (Australia)
 - William Herschell (La Palma, Canary Islands)

Simulation configurations

- CTA: North and South example surveys
- SKA: GASKAP galactic survey (Dickey, 2013)
- Scenario (max Zenith: 55^o)
 - Leader: site SKA-AU, GASKAP survey
 - Follower: site CTA South, CTA South survey example (FOV: 8 deg \emptyset)
- Leader and follower
 - Strategy 1: leader and follower subarrays are optimized simultaneously
 - − Strategy 2: leader is optimized individually
 → Followers do a follow-up

Simulation results

 No targets can be observed simultaneously in CTA South and SKA because of the maximum ZA (55^o) → Optimization reduces time between observations

	MO Strategy 1		Individually		
	SKA	CTA South	SKA	CTA South	
Required Time (h)	13300	2062.25	13300	2062.25	
Targets in the survey	275	1356	275	1356	
Available Time (h)	6132	1149.78	6359.34	1193.52	
Observing Time (h)	3968.67	713.33	3984.67	720.67	
Slew Time (h)	255.64	72.02	88.75	27.3	
#Observations	11906	2140	11954	2162	
Targets observed (#Planned (#Completed))	235 (19)	652 (212)	236 (43)	483 (373)	
Survey completion (%)	29.84	34.59	29.96	34.95	

Simulation results

- Multi-Messenger
 - CTAN&S coordinated & GW transients follow-up
 - Configuration: 854 targets, required time 7200 h (incl. 2000 h for transients), 2500 h/yr of available time
 - 10 yr simulation (figure: results after 1st yr)

Equatorial Coordinates 2021-01-09 19:23:33.576

Conclusions

- STARS is a framework for observatory time scheduling
 - Algorithms used are: GA, MOEA and astronomical heuristics. Other global search algorithms can be applied following the same steps
 - Hard and soft constraints can be adapted and generalized to different cases
 - Tool to estimate the efficiency of the survey, and to study the impact of different parameters or which targets are most restrictive
- STARS is applied to different projects: CARMENES, TJO, CTA, ARIEL-ESA
 - Simulations for Multi-observatory and Multi-Messenger applications: CTA&GASKAP, CTAN&S&GW follow-up

Telescope and space mission scheduling towards a multi-observatory framework

Pep Colome (colome@ieec.cat)

Astronomy ESFRI & Resègreh Infrastructure Cluster

