KM3NeT science and multi-messenger synergies

D. Dornic (CPPM/CNRS)

On behalf the KM3NeT Collaboration

KM3NeT Science cases

χ

A vast multi-disciplinary program

Low Energy MeV < E_v < 20 GeV

Oscillations, supernova

$\begin{array}{l} \mbox{Medium Energy} \\ \mbox{20 GeV} < E_{\nu} < 10 \mbox{ TeV} \end{array}$

Dark matter, exotic particles Sources of v, diffuse flux, link to CR

High Energy

 $E_{v} > 10 \text{ TeV}$

KM3NeT- ARCA

+ Oceanography, marine biology, seismology

KM3NeT-ORCA

KM3Ne¹

KM3NeT detectors

ORCA: off shore Toulon, France

Astroparticle Research with Cosmics In the Abyss

ARCA: off shore Capo Passero, Italy

Same collaboration, same technology, two installation sites

- **31** 3-inch PMTs = 1 Digital Optical Module (DOM)
- **18** DOMs = 1 Detection Unit (DU)
- **115** DUs = 1 Building Block (BB)
- 6 DUs ORCA + 24 DUs ARCA = KM3NeT Phase 1
- 1 BB ORCA + 2 BB ARCA = KM3NeT Phase 2

	ARCA	ORCA
DU distance	90 m	20 m
DOM spacing	36 m	9 m
Instrumented mass	2*500 Mton	5.7 Mton

KM3NeT in number for astronomy

Main characteristics:

- Extended energy range: ~ 3 GeV → > 10 PeV
- Full sky coverage with the best sensitivity for the galactic sources
- High duty cycle (> 90-95%)
- All flavour neutrino detection
- Good angular resolution

 \implies Construction on-going: at present 1 DU working in ARCA and in ORCA + 5 DUs ready for deployment in ORCA (>300 DOMs builded)

 \implies Mid 2020, better sensitivities than ANTARES in the whole energy range.

- ARCA dedicated to neutrino astronomy:

 \implies Tracks (100 TeV - 10 PeV) with the excellent angular resolution (<0.2°)

 \implies Cascades (100 TeV - 10 PeV) thanks to the good angular resolution (1-2°) and taking advantages of the low atmospheric background contribution

ORCA can do also astronomy:

- \implies Tracks & cascades at low energy (few GeV 10 TeV), looking for time/space clusters
- \implies Example sources: winds of binaries, chocked GRBs, hidden jets in core-collapse SN

- ORCA & ARCA: detection of MeV neutrinos from ccSN

KM3NeT first data

ARCA2 and ORCA1 data analysed to estimate the detector stabilities, the performances of the calibration methods (PMT detection efficiencies, time offsets) with detailed runby-run simulations: good understanding of the PMTs / DOMs and the environment properties.

 \implies Neutrino events already detected in each site.

KM3Ne¹

KM3NeT performances

Tracks:

- Direction:
- ➡ Gal. sources: 0.2° at 10 TeV
- ➡ Extra-gal. sources: 0.1° at 100 TeV
- Energy: 0.27 in Log10(E)

For ORCA, 2° at 100 GeV, 1° at 1 TeV

Cascades:

- Vertex: 6-8m (long), 0.5m (perp)
- Direction: ~1.5°
- Energy: 5%

For ORCA, 3-4° at 100 GeV

KM3NeT expected performances

Full ARCA will be able to detect the IceCube cosmic diffuse flux in less than 1 year. \Rightarrow Investigate isotropy, spectral shape, flavor composition.

Point-like steady search sensitivities: 1st targets are the galactic sources (thanks to the detector localisation)

(KM3NeT Coll., arXiv:1810.08499)

KM3Ne¹

ANTARES multi-messenger program

ANTARES in numbers:

- Stable data taking since 2007 with high duty cycle (>95% efficiency)
- Large field of view (2π instantaneously)
- Quite good angular resolution: 0.3-0.4° (median)
- But it is also small: A_{eff} ≈1m² @ 30 TeV (o(12000) detected neutrinos)
- Real-time data processing

Very large multi-messenger program:

KM3NeT multi-messenger programs

Synergies ESFRI facilities

KM3NeT

Send HE v alerts in real-time Receive HE γ triggers in real-time Get updated source catalogues (SNR, PeVatrons, AGN...)

KM3Ne¹

Send HE v alerts in real-time Receive radio triggers in realtime (FRB...)

Get updated source catalogues

Send HE v alerts via ToO for redshift, host galaxy studies

Summary

- Detection of gravitational waves (LIGO/Virgo), cosmic HE neutrinos (IceCube) and the first Galactic PeVatron (H.E.S.S.) astronomy.
- With ANTARES, we have performed plenty multi-messenger analyses with 12 years of data (See Talk of M. Colomer tomorrow)

 \Rightarrow ANTARES will be probably decommissioned next year and pass the baton to KM3NeT.

- By observing astrophysical neutrinos with good angular resolution, an extended energy range and a full sky coverage with a high duty-cycle, KM3NeT will play a key role.
- Important synergies with others facilities such as CTA, SKA, LVC, ELT, SVOM, etc: mutual real-time follow-ups, exchanges of data (flares, spectral/angular shapes...)

KM3NeT 2.0: Letter of Intent

KM3NeT

:1601.07459v

Letter of Intent for ARCA and ORCA

KM3NeT 2.0

- Astroparticle & Oscillation Research with Cosmics in the Abyss -

27th January 2016

More details on KM3NeT technologies and science cases in the Letter of Intent: arXiv/1601.07459 J. Phys. G: Nucl. Part. Phys. 43 (2016) 084001

 \Rightarrow Since then, large improvement in the

event reconstructions and analysis method. + Analysis of 1st ORCA/ARCA data. Updates planned end of this year

KM3Ne[·]

KM3NeT data policies

- ➡ KM3NeT neutrino data are proprietary but become public after a latency of 2 years after the data taking.
- However, significant events might trigger alerts that will be distributed publicly to the astro community using standard VO event format within ~10s after the neutrino detection
- Sub-threshold alerts and multiplets will be distributed through private channel to observing teams upon MoU agreements.