Machine learning classification for gravitational-wave triggers in single-detector periods

Michał Bejger, Éric Chassande-Mottin & Agata Trovato (APC Paris)

26.3.19

Outline

- ★ Introduction
- $\star\,$ Detectors' data and detection principles
- ★ Time-domain event classifier (DL CNN)
- ★ Ongoing work

LIGO-Virgo GW astronomy: 2015 - present

One year of O3: expected tens of binary black hole mergers and a few binary neutron star mergers.

GWTC-1

GRAVITATIONAL-WAVE TRANSIENT CATALOG-1

(arXiv:1811.12907)

Instrumental glitches as time-frequency maps

Deep learning on image data:

- * Spectrogram parameters/choice dependent,
- ★ Extra preparation time and large data volume.

Time series representation:

- As close as possible to raw data (minimal manipulation),
- * Reduced volume of data.

Network-of-detectors paradigm and beyond

- ★ Transient noise may mimic the GW signal
- → current pipelines use coincidences in two or more detectors,
 - ★ Single-detector time marginally exploited (2.7 months in O1+O2 → could contain 3 events)

Training data: noise and glitches

Three instances of training data: noise, noise+signal, glitch

Glitches and "clean" noise data samples from the last month of LIGO O1 run (downsampled to 2048 Hz, duration: $4s \rightarrow 8192$ points), whitened by the amplitude spectral density of the noise.

Training data: "chirp" signals

Randomly selected binary black holes' system merger waveforms: $m_1, m_2 \in (8, 16)$, signal-to-noise $\rho \in (15, 45)$, added to "clean" noise samples, whitened.

Convolutional Neural Network

Glitches, noises and signals - 1D classification results

- ★ Training data: 1000 instances
 × 3 classes,
- ★ Training time: ≃10 minutes for 20 epochs @ Nvidia Tesla K40XL,
- * Accuracy on test data: 0.97

1D Convolutional Neural Network

Layer (type)	Output	Shape	Param #
reshape_1 (Reshape)	(None ,	8192, 1)	0
conv1d_1 (Conv1D)	(None,	8188, 500)	3000
max_pooling1d_1 (MaxPooling1	(None,	2729, 500)	0
conv1d_2 (Conv1D)	(None,	2725, 250)	625250
conv1d_3 (Conv1D)	(None,	2721, 250)	312750
max_pooling1d_2 (MaxPooling1	(None,	907, 250)	0
conv1d_4 (Conv1D)	(None,	903, 150)	187650
global_average_pooling1d_1 ((None,	150)	0
dropout_1 (Dropout)	(None,	150)	0
dense_1 (Dense)	(None,	3)	453
Total params: 1,129,103 Trainable params: 1,129,103 Non-trainable params: 0			

Ongoing work

Having the training data set, we are

- ★ adding features:
 - * environmental channels (multi-instance learning),
 - specific classification for glitches (e.g. using labeled data from Gravity Spy),
 - study causality between time-series (e.g. main GW channel vs environmental channels),
 - * DNN compression to decrease the size and latency.
- \star implementing other ideas for 1D DNN:
 - * Recurrent Neural Networks (RNN), Long-Short Term Memory (LSTM) for classification,
 - Convolutional Denoising Autoencoders (to denoise signals/glitches to study their morphology),
 - * Generative Adversarial Networks for anomaly detection.

Causality studies

Example Virgo time-frequency glitchgram (Virgo logbook)

LIGO Hanford horizon drops due to trucks (Berger 2018)

Predictive (Granger) causality: adding a new time-series improves prediction of the next data-point.

In the context of GW data characterization and quality:

- Detect cause-effect relation between auxiliary and main GW channels,
- → Investigate and remove noise sources and/or characterize and remove glitches from the main GW channel.

DNN compression

DNN as a parametric model:

$$p(\mathcal{D}|\mathbf{w}) = \prod_{i=1}^{N} p(x_i|y_i,\mathbf{w})$$

D - data, $N x_i$ - input y_i - output pairs, **w** - parameters weights with prior $p(\mathbf{w})$

- Minimum description length (MDL) principle ("best model is the most compressed"), related to Bayesian inference
- * Approximating the posterior $p(\mathbf{w}|\mathcal{D} = p(\mathcal{D}|\mathbf{w})p(\mathbf{w})/p(\mathcal{D})$ to minimize a function

$$\mathcal{L}(\phi) = \mathcal{L}^{\mathcal{C}} + \mathcal{L}^{\mathcal{E}}$$

complexity cost error cost

by optimizing the variational parameters ϕ with sparsity-inducing priors to prune nodes/weights.

- \rightarrow "variational dropout"
- → motivation e.g. Louizos et al. 2017 (arXiv:1705.08665).

+

COST action G2Net (g2net.eu)

Three working groups:

- * WG1: ML for GW astronomy,
- * WG2: ML for low-frequency seismic measurement,
- * WG3: ML for Advanced Control techniques.

You are cordially invited to join! $\ddot{-}$

Convolutional Denoising AutoEncoder

noise+signal

signal

Generative Adversarial Network

