Identifying Electromagnetic Counterparts to NS-NS Mergers

Dr. Dario Carbone

Department of Physics & Astronomy, Texas Tech University

On August 17th, 2017

First detection of a binary neutron start mergers in gravitational waves.

First detection of the same event in both gravitational and electromagnetic waves.

Credit: European Southern Observatory Very Large Telescope

Abbott et al., ApJL, 848:L12, 2017

... all the way to radio!

Notivation

- NS-NS mergers will be routine be prepared!
- The optical/IR counterpart of GW170817 was very distinct from other optical transient in the (relatively small) LIGO/Virgo error region.
 - It might not be the case for other events...
- GW170817 was very close (~40 Mpc), making any follow up easier than other, further away events.

Votivation

- Use radio because:
 - Ubiquitous independent of the geometry.
 - Tracks different components than UV/opt/IR.
 - Long lived, no Sun constraints.
- We have an approved JVLA large program for 280 hours (JAGWAR team).
- Determine best follow-up strategy with lowest number of observations.
 - We cannot observe future events as much as we did for GW170817.

Questions we want to address

- and correctly and uniquely identify their physical parameters?
- from fast ejecta in binary neutron-star mergers?
- Array (SKA) improve the current picture?

Can we optimize the radio follow-up strategy to detect neutron star mergers

Is radio the only (or best) channel through which we can probe the emission

How will a next generation Very Large Array (ngVLA) and Square Kilometer

- We simulated off-axis short GRBs @40 Mpc. (van Eerten et al., ApJ, 79:44, 2012)
- curve. (Lazzati et al., PRL 120, 241103, 2018)

We have also simulated sources using the best fit of GW170817 light

- We simulated off-axis short GRBs @40 Mpc. (van Eerten et al., ApJ, 79:44, 2012)
- We have also simulated sources using the best fit of GW170817 light curve. (Lazzati et al., PRL 120, 241103, 2018)
- We assume that radio observations follow up a specific, and well localized (~arcsec) optical transient.
 - It may or may not be the optical counterpart to the GW trigger!
 - We included this possibility in our analysis by including contaminant sources.

Circumstellar density

 10^{-2} , 10^{-3} , 10^{-4} cm⁻³.

We created 9 families of sources with these parameters, simulating 90000 sources per family.

Off-axis angle

20, 30, 45 degrees.

Circumstellar density

 10^{-2} , 10^{-3} , 10^{-4} cm⁻³.

We created 9 families of sources with these parameters, simulating 90000 sources per family.

We included errors in the models by varying the microphysical parameters: • $\varepsilon_{\rm F} = 0.1, 0.05, 0.01$ • $\varepsilon_{\rm B} = 0.01, 0.005, 0.001$

Off-axis angle

20, 30, 45 degrees.

Simulated LC

 $E = 10^{50} \text{ erg}$

Jet half-opening angle = 12 deg

Dario.Carbone@ttu.edu

Method - Radio Observations

- We simulated radio observations performed by the JVLA at 5 GHz, with 4 GHz of bandwidth.
- Each observation has total time of 2h and reaches a 3σ sensitivity of 15 μ Jy.
- The maximum number of observations per event is set by expected event rate and typical VLA-1 year time allocation.
- Light curve association to physical model done by comparing measured flux to expected flux.

Results

- viewing angle).
- The optimal observational setup and efficiency depend on the available observing time.
- sources we simulated.
- Only 4 families of sources are actually identifiable!

The parameter we maximized is the probability to discover a source and correctly/uniquely identify its physical parameters (i.e. circumstellar density and

Eight 2h observations are required to uniquely identify ~60% of all possible

Concusions

- We can correctly and uniquely identify the physical parameters of radio counterparts to NS-NS mergers for several combinations of these parameters.
- Future is bright & exiting!
 - LIGO/Virgo O3 cycle will start next week!
 - More events to be discovered (~5 per year).
 - ngVLA will push the horizon much further (for GW170817: 55 Mpc, now, to 176 Mpc, with ngVLA).

Delay between merger & radio observation

Optical discovery

Telescope availability

- 3 days t_{o, opt}

a) 1 hour - 2 days b) 3 - 5 days c) 7 - 15 days ΔT_0

to, radio = to, opt + ΔT_0 16

Dario.Carbone@ttu.edu

- We produced X-ray and optical light curves of our targets (the emission coming) from the jet), at 1 keV and at 658 nm (R band).
- We calculated their average fluxes at 1h, 1d, 2d and 6d.

X-rays & Optical

- We produced X-ray and optical light curves of our targets (the emission coming) from the jet), at 1 keV and at 658 nm (R band).
- We calculated their average fluxes at 1h, 1d, 2d and 6d.

- None of the optical light curves are brighter than magnitude 24, and are therefore undetectable.
- Only one of our targets is detectable up to 6 days after the merger by Chandra $(3\sigma \text{ sensitivity } \sim 3 \times 10^{-15} \text{ erg cm}^{-2} \text{ s}^{-1}, \text{ unabsorbed flux}).$
- Radio is critical to probing the dynamics of the relativistic jets.

X-rays & Optical

Next Generation Very Large Array (ngVLA)

- 10x the collecting area JVLA & ALMA
- Frequency range 1 115 GHz
- 10x longer baselines (300 km) for mas-resolution
- Dense antenna core on km-scales
- Early Science 2028 fully operational 2034

ngvla.nrao.edu

Dario.Carbone@ttu.edu

Targets horizons

be comparable to the one of aLIGO (~150-200 Mpc).

Class	JVLA Distance Horizon (Mpc)	ngVLA Distance Horizon (Mpc)
Target 0	288	910
Target 1	147	465
Target 2	64	203
Target 3	136	429
Target 4	56	176
Target 5	21	67
Target 6	44	138
Target 7	17	53
Target 8	6	19

Adapted from Carbone & Corsi, APJ, 867, 135, 2018

• With ngVLA the distance to which we can detect these sources will

ngVLA

ngVLA pushes the horizon much further!

- We can explore sources 10x dimmer.
 - We can detect sources with different combinations of viewing angle and circumstellar density, at the current horizon distance.
 - We can detect sources ~3x further away, i.e. 30x more frequent

Dario.Carbone@ttu.edu

Results - part I

- We repeated the same exercise, for sources 3x further away (120 Mpc).
- Eight 2h observations are required to uniquely identify ~60% of all possible sources we simulated.
- We obtain the same efficiency a the current generation VLA, for sources ~30 more numerous.

The unfolding radio story...

Hallinan, Corsi, et al. 2017, Science, 0.1126/science.aap9855

(Short) Gamma-ray Burst (seconds), X-rays (secsdays) if on-axis or not too far off-axis

> Kilonova **R-process nucleosynthesis:** optical-IR (~ I day).

M. M. Kasliwal et al., Science 10.1126/science.aap9455 (2017)

Why so dim?

Dario.Carbone@ttu.edu

25

GRB170817: A dim outlier!

Pre-GW170817 expectations: NS-NS rates

- Dominik et al. pop syn -
- de Mink & Belczynski pop syn -
 - Vangioni et al. r-process -
 - Jin et al. kilonova -
 - Petrillo et al. GRB -
 - Coward et al. GRB -
 - Siellez et al. GRB -
 - Fong et al. GRB -
 - Kim et al. pulsar -
- aLIGO 2010 rate compendium -

Dario.Carbone@ttu.edu

