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-Irst detection of a binary neutron start
mergers In gravitational waves.

First detection of the same event in both
gravitational and electromagnetic waves.

Radio
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... all the way to radio!
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Motivation

® NS-NS mergers will be routine - be prepared!

® [he optical/IR counterpart of GW1 /70817 was very distinct from other optical
transient in the (relatively small) LIGO/Virgo error region.

- It might not be the case for other events...

® G\W1/70817 was very close (~40 Mpc), making any follow up easier than
other, further away events.
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Motivation

® Use radio because:

» Ubiquitous - iIndependent of the geometry.

» Tracks different components than UV/opt/IR.
» Long lived, no Sun constraints.

® \\Ve have an approved JVLA large program for 280 hours
(JAGWAR team).

® Determine best follow-up strategy with lowest number of olbservations.

- We cannot observe future events as much as we did for GW1/70817.
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® Can we opiti

and correct

Questions we want to
address

v and uniquely identify their physical parameters”?

mize the radio follow-up strategy to detect neutron star mergers

® |s radio the only (or best) channel through which we can probe the emission
from fast ejecta in binary neutron-star mergers?

® How will a next generation Very Large Array (hgVLA) and Square Kilometer

Array (SKA)

improve the current picture?
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Method - Simulated Sources

® Ve simulated off-axis short GRBs @40 Mpc.

(van Eerten et al., Apd, 79:44, 2012)

® \Ve have also simulated sources using the best fit of GW170817 light

curve.
(Lazzati et al., PRL 120, 241103, 2018)
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Method - Simulated Sources

® Ve simulated off-axis short GRBs @40 Mpc.

(van Eerten et al., Apd, 79:44, 2012)

® \Ve have also simulated sources using the best fit of GW170817 light

curve.
(Lazzati et al., PRL 120, 241103, 2018)

® \\Ve assume that radio observations follow up a specific, and well
localized (~arcsec) optical transient.

® [t may or may not be the optical counterpart to the GW trigger!

® \\Ve included this possibility in our analysis by including
contaminant sources.
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Method - Simulated Sources

Circumstellar density Off-axis angle
102, 10-3, 104 cm-3, 20, 30, 45 degrees.

We created 9 families of sources with these parameters,
simulating 90000 sources per tamily.
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Method - Simulated Sources

Circumstellar density Off-axis angle
102, 10-3, 104 cm-3, 20, 30, 45 degrees.
We created 9 families of sources with these parameters,

simulating 90000 sources per tamily.

We included errors in the models by varying the microphysical parameters:
e ¢ =0.1, 0.05, 0.01

® c5 = 0.01, 0.005, 0.001
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Simulated LC

GW170817 best fit
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Adapted from Carbone & Corsi, APJ, 867, 135, 2018
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Method - Radio Observations

® \\Ve simulated radio observations performed by the JVLA at 5 GHz, with 4 GHz
of bandwidth.

® Each observation has total time of 2h and reaches a 30 sensitivity of 15 pJdy.

® [he maximum number of observations per event is set by expected event rate
and typical VLA-1 year time allocation.

® | ight curve association to physical model done by comparing measured flux to
expected flux.
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Results

® [he parameter we maximized is the probability to discover a source and
correctly/uniquely identify its physical parameters (i.e. circumstellar density and
viewing angle).

® [he optimal observational setup and efficiency depend on the available
observing time.

® Eight 2h observations are required to uniquely identify ~60% of all possible
sources we simulated.

® Only 4 families of sources are actually identifiable!
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Conclusions

® \\Ve can correctly and uniquely identify the physical parameters of radio counterparts

to NS-NS mergers for several combinations of these parameters.

® [uture is bright & exiting!
® | | GO/NVirgo O3 cycle will start next week!
® More events to be discovered (~5 per year).

® ngVLA will push the horizon much further
(for GW170817: 55 Mpc, now, to 176 Mpc, with ngV

14
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Delay between merger &
radio observation

Optical discovery

1 - 3 days
tO,opt

_|_

-
A

e

a) 1 hour - 2 days NSO
Sessiy,

Vi i

b) 3 - 5 days > Jm v

ATo

elescope availabllity

tO, radio — tO, opt ATO
16 Dario.Carbone@ttu.edu



® \Ve produced X-ray and optical ligh

from the jet), at 1 keV and at 658 n

® \\Ve calculated their average fluxes at 1h, 1d, 2d and ©6d.

m (

X-rays & Optical

R band).
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® \\e produced X-ray and opt

ical ligr

from the jet), at 1 keV and a

® \\Ve calculated their average fluxes at 1h, 1d, 2d and ©6d.

® None of the optical light curves are brighter than magnitude 24, and are

therefore undetectable.

® Only one of our targets is detectab
(30 sensitivity ~3x10-1° erg cm-2 s-1, unabsorbed flux).

® Radio Is critical to probing the dynamics of the relativistic jets.
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t curves of our targets (the emission coming

e up to 6 days after the merger by Chandra
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Next Generation Very Large
Array (ngVLA)

¢ 10x the collecting area JVLA & ALMA
e Frequency range 1 - 115 GHz
® 10x longer baselines (300 km) for mas-resolution
® Dense antenna core on km-scales

e Farly Science 2028 - fully operational 2034
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Targets horizons

® \Vith ngVLA the distance to which we can detect these sources will
be comparable to the one of aLIGO (~150-200 Mpc).

JVLA Distance | ngVLA Distance
Horizon (Mpc) | Horizon (Mpc)
Target O 910
Target 1 465
Target 2 203
Target 3 429

Class

Target 4 ' 176
Target 5 67
Target 6 138
Target 7 23
Target 8 19

Adapted from Carbone & Corsi, APJ, 867, 135, 2018
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ngVLA

NgVLA pushes the horizon much further!

® \\e can explore sources 10x dimmer.

® \\e can detect sources with different combinations of viewing angle and circumstellar
density, at the current horizon distance.

® \\e can detect sources ~3x further away, I.e. 30x more frequent
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Results - part |

® \\e repeated the same exercise, for sources 3x further away (120 Mpc).

® Eight 2h observations are required to uniquely identify ~60% of all possible sources
we simulated.

® \\Ve obtain the same efficiency a the current generation VLA, for sources ~30 more
NUMerous.
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The unfolding radio story...
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===High E cocoon : I'=2 ; E=10"" erg ; n=0.003 cm™
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==« Off-axis jet: 9j=12° ; 90b8=30°; E. =2 X 10 erg : n=0.001 cm™
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Gravitational
waves!

(Short) Gamma-ray Burst

/‘ (seconds), X -rays (secs-
4

days) if on-axis or not too far
off-axis

Interaction with ISM

(optical and radio
afterglow, days to
lelaliy

.Q

Courtesy:Varun Bhalerao

=@

Kilonova
R-process nucleosynthesis:
optical-=IR (~ | day).
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Why so dim?

A On-axis Weak sGRB B Slightly Off-Axis Classical SGRB

Weak Afterglow A\ Afterglow

X-ray/Radio).-: o (Xray/Radio)
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K Weak y-rays
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% Macronova ... - A, Macronova
% (UVOIR) = (UVOIR)

M. M. Kasliwal et al., Science 10.1126/science.aap9455 (2017)
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GRB170817: A dim outlier!

[
-
L
>
v
=
o
i
1
>
v
kv,
i
O
@
L

1056
1055
1054
1053
1052
1051
1050
1049
1048
1047

1046

Abbott et al., ApJL, 848:L13,
2017

Long GRBs
Short GRBs
GRB 170817A

4
Radshift (z)



Pre-GW170817
expectations: NS-NS rates

Dominik et al. pop syn

de Mink & Belczynski pop syn

Vangioni et al. r-process
Jin et al. kilonova
Petrillo et al. GRB

Coward et al. GRB
Siellez et al. GRB
Fong et al. GRB
Kim et al. pulsar

aLIGO 2010 rate compendium

10* 10° 10*
BNS Rate (Gpc—2yr—1)
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