MULTI-MESSENGER ASTRONOMY IN THE MEDITERRANEAN SEA

Marta Colomer Molla on behalf of the ANTARES-KM3NeT collaboration

"The new era of Multi-messenger astrophysics", Groningen, 28/03/2019

WHY MULTI-MESSENGER ASTRONOMY WITH NEUTRINOS?

Neutrino telescopes suitable to look for transient sources: continuously monitoring at least half of the sky!

Studies of transient & variable sources: increase the sensitivity + discovery potential (short duration allows to reduce background) Multi-messenger studies: increase the statistical significance (requiring joint detection)

 \rightarrow Different messengers provide different informations to understand the astrophysical processes and phenomena

THE ANTARES NEUTRINO TELESCOPE

- Deployment completed in 2008 → More than 10 years taking data!
- 2475 m depth in the Mediterranean sea
- 40km offshore from Toulon
- 12 lines, 25 storeys per line
- 3 PMTs per storey facing 45° downwards
- Position, time and charge used to reconstruct particle direction and energy

ANTARES RECONSTRUCTION PERFORMANCE

TRACKS

vμ (vτ)CC interactions

Neutrino can interact outside the detector

Good angular resolution: <0.4° for Ev>10TeV

Quasi-spherical contained events

Angular resolution: ~3°

Good energy resolution (10-15%)

3

MEDIAN ANGULAR RESOLUTION: TRACKS

MEDIAN ANGULAR RESOLUTION: SHOWERS

MULTI-MESSENGER PROGRAM OF ANTARES: TWO APPROACHES

- Fast neutrino online reconstruction
- Selection: HE, direction, multiplet
- Alerts sent to EM and neutrino observer partners

TAToO program

**see talk by D.Dornic

Low latency alerts (<10 sec) 292 alerts sent to robotic telescopes (07/2009-31/12/2018):

- 17 sent to Swift
- 15 sent to Integral (3 followed)
- \sim 20 to MWA (3 followed)
- 2 to HESS

MULTI-MESSENGER PROGRAM OF ANTARES: TWO APPROACHES

FAST RADIO BURSTS

 Search for time/space correlations with fast radio bursts detected by Parkes, UTMOST and ASKAP between 2013 and 2017.

 No significant correlation
 Limits on the neutrino fluence assuming different energy spectra

- Constraints on the TeV-PeV neutrino energy released by FRBs
- Comparison with short GRB and magnetar giant flares / soft gamma-ray repeaters models

TIME CORRELATIONS WITH ICECUBE EVENTS

- Search for time correlations with IceCube HESE and high-energy v_{μ} tracks
- Test transient origin of IceCube events
- No significant correlation (largest excess: 89% p-value post-trial)
- No event in correlation over timescale \leq 3 h
- Constraint on the spectral index of the neutrino spectrum (assuming ~sec. transient emission)

SEARCH FOR NEUTRINOS FROM TXS 0506+56

→ No up-going muon neutrino candidate event recorded within 3° around the IC170922A direction within ±1 h centered on the event time in the online data stream.

Abert et al., ApJL 863, L30 (2018)

SEARCH FOR NEUTRINOS FROM TXS 0506+56

ANTARES time dependent search method
Bursting period defined by the two profiles provided by the IceCube Collaboration:

- Gaussian flare (centered on Dec 13, 2014)
- Box flare (centered on Dec 26, 2014)

- No signal has been found during either of the considered flares
- → 13 events within 2° from the source found in data. None of them lie within either of the two flaring periods

Spectrum	$\Phi_{100}^{90\%}$ TeV [10 ⁻¹⁸ GeV ⁻¹ cm ⁻² s ⁻¹]	5%-95% energy range
E ^{-2.0}	4.6	2.0 TeV – 3.2 PeV
E ^{-2.1}	4.4	1.3 TeV – 1.6 PeV
E ^{-2.2}	4.2	I.0 TeV – I.0 PeV

GRAVITATIONAL WAVE FOLLOW-UPS (BINARY BLACK HOLES)

Neutrino emission coincident with BBH events.

Search (jointly with IceCube) for:

-GW150914 (Adrian-Martinez et al., PRD 93, 12, 2016)

-GW151226+LVT151012 (Adrían-Martinez et al., PRD 96, 2, 2017) → increase of sensitivity

-GW170104 (Albert et al., EPJC 93, 77, 2017) → full sky

ONGOING work: Update of GW offline analysis with new cataloged events

→ First analysis above ANTARES horizon (feasible for transients)

GRAVITATIONAL WAVE FOLLOW-UPS (GW170817)

Gravitational waves

Gamma-ray

GRAVITATIONAL WAVE FOLLOW-UPS (GW170817) : ANTARES-IC-AUGER

ANTARES:

Search over ±500 s and +14 days Track + shower events (all flavors)

Over ±500 s around the merger:

No counterpart over +14 days either

CONSTRAINTS ON THE SOURCE

Neutrino emission related to the prompt/extended high-energy emission (**Kimura et al., 2017**)

Fang & Metzger 2017:

Magnetar + ejected material from the coalescence:

ԿE cosmic ray acceleration ԿE neutrino production

CONCLUSIONS:

- Multi-messenger astronomy era ! GWs + neutrinos
- Broad multi-messenger program joint effort
- Increases discovery potential of neutrino telescopes
 (by observing the same source with different probes)
- Refines detection efficiency (relaxed cuts if time coincidence required)
- Hopefully: High significance multi-messenger detections with neutrinos soon! (KM3NeT is coming)

SEARCH FOR COUNTERPARTS TO ICECUBE ALERTS

Search in real-time for neutrino counterparts to IceCube HESE+EHE (>1PeV) alerts sent through AMON to the public community (GCN network) since 03/2016

=> 18 alerts sent so far => 8 analyzed, + 5 retracted by IC, 5 not visible at the time of the alert as upgoing.

No ANTARES event found in coincidence (ROI=2°, ±500s; ±1h)

⇒ U.L. on the radiant neutrino fluence for E^{-2} and $E^{-2.5}$ spectra:

~15 GeV/cm² in [2.8 TeV, 3.3 PeV] for E⁻² ~30 GeV/cm² in [0.4 TeV, 280 TeV] for E^{-2.5}

KM3NET PERSPECTIVES

→ Search for upgoing neutrinos at δ =-23deg, RoI=30deg2, within ±500s (GW170817 ANTARES like optimization on the 3 σ significance)

PRELIMINARY

