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On August 17t 2017...
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« Confirmed NS-NS mergers as progenitors for short GRBs
* Inauguration of the era of multi-messenger
astronomy with GW
» Other fundamental (astro-)physics: GR, NS EOS,
Hubble constant measurement, r-process nucleosynthesis, etc.

Flux density (u)y)

Afterglows and kilonovae:
What should we expect for O3?
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Context
Afterglow, kilonova

= great wealth of information! At R inkis®
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v Localization @

v' External medium density

v Jet kinetic energy 5 3 BT o
v Jet geometry A 5339 ARA [mas]

v  Viewing angle
v' Magnetic field
v And more!
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« Which kilonovae and afterglows to expect and what will they look like?
* How will they help to study the environments of NS binaries?

« What insight will they bring on the origin of the jet structure?
mt will they tell us on GRBs and their dissipation mechanisms? Id




32(2)8 BNS/G pC3E/yr (Abbott+2018)
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Population model distributions:
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: BPL, break energy 2.10%2 erg, slopes +0.5 and -2




(Detectable) Event rates for NS-NS

Detector conf. #(GW+AG) #(GW+KN)

O3 + VLA
Design + VLA 21
Design + SKA 21 6

/00 Mpc 92 20
Horizon + SKA

Uncertainties: +200% (intrinsic rate from LIGO-Virgo 02/03)
i uncertalnty on population model

« In general: 10-20% events have detectable AG
(depending on energy distribution)
« Large deviation from this = constraints on population!

GW+GRB ~ 1-10% (03)

(Beniamini et al. 2018)




Properties of joint events: viewing angle

_ 1 Joint (O3+VLA) ]
0.035¢ 1 GW only ]
I 1 All events

® Most events seen off axis!

® Mean angle ~20-30°
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Properties of joint events: viewing angle

1 Joint (O3+VLA) ]
1 GW only 1
1 All events

® Most events seen off axis!
® Mean angle ~20-30°
® New insight on GRB physics

- Jet geometry? Origin of lateral
structure?

- GRB dissipation mechanisms
(thermal tail?)
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RD, Daigne, Mochkovitch (in prep.)

+ Other distributions:
e, peak flux, proper motion, ...




Binaries in high density media Formation medium

* NS binaries with high eccentricity or efficient common [ density (high)
envelope phase merge in high density media after short
delay time (Beniamini+2016)

® Mergers occurring in dense media produce brighter AG

N
and are more likely detected (F ~ n*>) Merger medium
density (low)

—> Tight constraints on binary environment from only a few

events
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Lanthanide-poor

Expectations for kilonovae  Biue (low )

1 = For O3...
b filter
= r filter
0.8

I
Mochkovitch, RD, Daigne, Zitouni (in prep.)
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Conclusion

Afterglows and KN are important to understand the local and
viewing conditions of NS-NS mergers

O3 is coming: several NS-NS GW events, a few with afterglow,
all with detectable KN

Actual fraction of AG/GW will constrain population of NS-NS
merger population (jet parameters, external density, etc.)

Most events are seen off-axis, allowing to probe the jet
geometry and emission therein

High-density mergers will allow to study fast-merging
binaries. Only a few events are necessary to constrain this
particular binary NS evolution channel.

What to expect from NS-BH mergers?




Long run

Interpretation tools for observations of GRBs in the multi-
messenger context:
p (1) Modeling of EM counterparts of CO fusions: sGRBs and

afterglows
m==) Context: observations by LIGO-Virgo (~2019)

(2) Modeling of the general population of GRBs and
afterglows
m==) Context: present and future observations:
Swift, Fermi, INTEGRAL, SVOM




Determining viewing angle and density from multi-
messenger observations
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1: GRBs & CO fusions

» Distinguish NS-NS and BH-NS?

« Nature of final object? Link with ring-
down signal?

« Systematic
fusion/GW/sGRB/kilonova/afterglow

association?
- GW/GRB delay?

2. General population of GRBs

Rates (Wei, Cordier et al. 2017a):
SVOM: 60-70 yrl

« Swift, Fermi, INTEGRAL: ~100 yr! [eciams o ] T I

. . . /N satellite ~ 930 kg g

» Radiative processes in GRB VT % payload ~450kg

u u romplt observation o}

(shocks/magnetic reconnection)? | S % follow-up observation 3

- Ejecta magnetization? o & ¢ g
» Other afterglow observables

ization, imaging)?




NUMBER OF BURSTS
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Gamma-ray bursts

BATSE Trigger 7343
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Duration

Longs (ccSNe):
e >2s
+ Soft

Short (compact obje
mergers):
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Gamma-ray bursts

L . log(R/m)
diation: dissipation: radiation:
rah 'f |onH . » shocks? synchrotron 5 Al v
IpC?O OSphere * reconnection? > -
©

afterglow:

» deceleration
* jet opening
* synchrotron

compact central
engine

\
prompt phase (X-ray, gamma) afterglow (X,
uv, O, IR
Radi




