NEUTRINOS ON ICE 3LAC COUNTERPARTS TO ICECUBE NEUTRINOS ABOVE 100 TEV

FE KRAUSS * FELICIA.KRAUSS@UVA.NL * J. WILMS, K. MANNHEIM, K. DESOKAR, M. KADLER, M. KRETER *

Papers in PDF link to journal article, slides available at https://fekrauss.com

1896: H. Becquerel discovery of radioactivity

1909: T. Wulf Eiffel tower and electrometer

1912: V. Hess balloon flight 5.3 km (17400 feet)

 \rightarrow Flux of charged particles from space

COSMIC RAYS

WHERE ARE COSMIC RAYS COMING FROM?

Felicia Krauß

IceCube collaboration (2018)

Consistent with IceCube?

WHAT IS THE HADRONIC CONTRIBUTION?

Krauß F. et al. (2014)

WHAT IS THE HADRONIC CONTRIBUTION?

Krauß F. et al. (2014)

WHAT IS THE HADRONIC CONTRIBUTION?

Krauß F. et al. (2014)

Consistent with IceCube?

Contribution to the high-energy spectrum

Consistent with IceCube?

Contribution to the high-energy spectrum

SIMILAR FOR ALL SOURCES?

What is the average percentage of hadronic emission? 4%

Are all sources equally hadronic?

?

METHOD

IceCube Collaboration (2013, 2013, 2014, 2015)

METHOD

IceCube Collaboration (2013, 2013, 2014, 2015)

- Calorimetrically blazars can explain IceCube events Krauß et al. (2014)
- First coincidence of blazar outburst and neutrino: PKS 1424–418 and IC 35

Kadler, Krauß et al. (2016), Nature Physics

▶ (TXS 0506+056 and IC 170922A)

DENTIFYING NEUTRINO COUNTERPARTS

$\text{Neutrinos} > 100\,\text{TeV}$

Krauß et al. (2018)

$\text{Neutrinos} > 100\,\text{TeV}$

Krauß et al. (2018)

$\text{Neutrinos} > 100 \, \text{TeV}$

 $N_{\nu,\text{all}} = 178 \gg 10 \text{ cosmic neutrinos}$

Kadler, **Krauß F.** et al., Nature Physics (2016) Krauß F. et al. (2018)

$\text{Neutrinos} > 100\,\text{TeV}$

 $N_{
u,all} = 178 \gg 10$ cosmic neutrinos

 \leq 4% of emission hadronic

FIRST CONSTRAINT ON HADRONIC CONTRIBUTION TO SED

MULTIWAVELENGTH MODELING OF TXS 0506+056

Felicia Krauß Leptonic model

(Gao et al., 2018; Keivani et al., 2018)

MULTIWAVELENGTH MODELING OF TXS 0506+056

Felicia Krauß Hadronic model

(Gao et al., 2018; Keivani et al., 2018)

> Blazars on average $\sim 4\%$ hadronic

▶ No 5σ associations yet!

Unclear whether different sources are less/more hadronic