

Supernova detection and real-time alerts with the KM3NeT neutrino telescopes

The New Era of Multi-Messenger Astrophysics Groningen, The Netherlands - March 25-29, 2019

Massimiliano Lincetto † on behalf of the KM3NeT collaboration March 27, 2019

[†]Aix-Marseille Université, CNRS/IN2P3, CPPM, Marseille (France)

Core-Collapse Supernovae (CCSNe) are possible explosive phenomena for stars between \sim 8 and \sim 50 M_{\odot} reaching the end of their life cycle:

- nuclear fusion stages → iron core + shells of lighter elements, sustained by the electron degeneracy pressure;
- iron photodissociation + electron capture → reduction of electron number, eventually triggering the collapse of the core to a proton-neutron star;
- bounce of infalling matter on p-n core \rightarrow shockwave leading to the explosion.

CCSN neutrino emission

97-99% of gravitational energy $O(10^{53} \text{ erg})$ is released through all-flavor neutrino emission in the 10 MeV range, when the envelope is optically thick.

After the **neutronisation burst**, the shockwave loses energy as it propagates until it **stalls** in the **accretion phase**, where hydrodynamical instabilities can take place. **Neutrino heating** revives the shock, finally producing the explosion. **Thermal cooldown** of the core follows.

Overview of KM3NeT design

- The ARCA (IT) and ORCA (FR) KM3NeT detectors will provide 3 blocks × 115 lines × 18 digital optical modules (DOMs) × 31 directional PMTs;
- large-scale experiment not optimised for reconstruction of low energy events;
- CCSN ν burst can be detected as a global detector PMT rate increase.

The multi-PMT DOM technology can be exploited for signal identification.

Flux model

3D CCSN flux simulation from MPA Garching Group¹, quasi-thermal distribution with pinched spectrum (full time-dependent flux).

Interaction channels

- 97% inverse Beta Decay (IBD): $\overline{
 u}_e + p
 ightarrow e^+ + n$
- 3% elastic scattering: $u_l + e^- \rightarrow \nu_l + e^-$
- \bullet <1% CC on: $\overset{(-)}{
 u}_{e}+^{16}{
 m O}$

¹http://wwwmpa.mpa-garching.mpg.de/ccsnarchive

KM3NeT response to CCSN ν is evaluated with a GEANT4 simulation.

Coincidences on the ns scale on a DOM are exploited for:

- bioluminescence rejection;
- PMT efficiency and time offset calibration using ⁴⁰K decays in sea water;
- discrimination of signal from atmospheric muons and supernova neutrinos, depending on the number of PMT hit in coincidence (multiplicity)

 $^{40}\mathrm{K}$ dominates multiplicity up to 6-7, atmospheric muons starting from 8.

An increase in coincidence rates is observable especially in the multiplicity range 6-10.

Atmospheric muon rejection

Contrarily to SN neutrinos, atmosperic muons produce correlated signals **detectable on more than one DOM**. This allows to **reduce the background** in the considered multiplicity range.

The filter optimized on the **ORCA geometry** works either by **selection of correlated coincidences** or by exploiting the **physics triggers**, allowing to reduce the background near to the residual ⁴⁰K contribution (indistinguishable from the signal).

The optimisation of muon filter for ARCA is undergoing thanks to the new data available.

Sensitivity

After the muon filtering, the number of detected coincidences in the multiplicity range 6-10 over a time window of duration τ is evaluated to determine the **trigger level** *X*.

Given the background rate ρ_b and a **known** onset time, for a given signal expectation X_D :

$$(\text{p-value}) \equiv P(X \ge X_D) = \sum_{X=X_D}^{+\infty} \mathcal{P}(\rho_B \cdot \tau, X)$$
$$X_D \propto D^{-2}$$

KM3NeT preliminary

Full galaxy coverage for the 27 M_{\odot} progenitor and beyond the galactic center for the 11 M_{\odot} progenitor!

A sliding time window of width $\tau = 400 \text{ ms}$ is updated with a $f_s = 10 \text{ Hz}$ sampling frequency. This turns the p-value into a false alert rate:

$$R_B(X \ge X_D) = f_s \sum_{X=X_D}^{+\infty} \mathcal{P}(
ho_B \cdot au, X)$$

The sampling f_s is optimised in order to:

- minimise the signal loss due to the time discretisation;
- avoid unnecessary increase of the number of time-trials.

Batch analysis of few months of ORCA and ARCA data show that the approach is **stable** and follows very well the **Poisson expectation**.

Observation rate vs. trigger level

SNEWS

Global network combining in real-time alerts from different detectors 2 .

 $\label{eq:source} \begin{array}{l} \mbox{black line} = \mbox{SNEWS false alert limit} \\ \mbox{Coverage up to the galactic center!} \end{array}$

CCSN astrophysics

Preliminary studies have been done on:

- sensitivity to fast time variations in the neutrino light curve (SASI oscillation);
- resolution on the determination of the time of arrival of the neutrino burst.

Higher signal statistics is required when compared to the simple detection, this comes at the cost of **higher background** contamination.

Bioluminescence and $^{40}{\rm K}$ are the main limitations in using lower-multiplicity coincidences (or even single rates).

This part of the analysis is under active developement.

²https://snews.bnl.gov

Current picture

- a specific data stream is now produced for the purpose of supernova detection and processed in real time;
- the first-stage processing at each shore station produces summary information used for monitoring by shifters;
- (for a 27 M_{\odot} progenitor) a single line has a reasonable sensitivity up to 3.5 kpc.

Development plan

- Data from ARCA and ORCA shore stations will be relayed to a common broker, paving the way for real-time alerts and SNEWS participation;
- Buffering of **low-level data** for more advanced quasi-online analyses (e.g. **neutrino light curve**) and **permanent storage** of interesting events.

Framework overview

The *all-data-to-shore* DAQ concept allows to build and distribute **dedicated data streams** that can be **shared by multiple applications** for different types of offline and online analyses, monitoring, etc.

A common architecture is used to distribute the information within the online framework.

Applications can select **any information** from the dispatcher, so the same data can be exploited in parallel for different goals (even combining different processing stages).

After establishing the sensitivity to the **detection of a galactic CCSN neutrino burst**, the detection algorithm has been developed into an **online trigger**.

The current phase with **one line operational at each KM3NeT site** (1 ARCA + 1 ORCA) is being exploited for the commissioning of the **online framework**.

The SN online monitor is now active at each shore station, soon to be combined.

In parallel CCSN astrophysics analyses are being developed.