## (a selection of planned and proposed) **Future NASA Missions for Multi-Messenger Astrophysics**







#### **Judy Racusin NASA Goddard Space Flight Center**



The New Era of Multi-Messenger Astrophysics, Groningen, March 26-30, 2019



# Short GRBs as GW Counterparts

- GRB 170817A
  - Detected by Fermi-GBM and INTEGRAL SPI/ACS
  - GBM triggered onboard regardless of GW detection
- GBM triggers onboard on ~40 sGRBs/ year
- Expected low-luminosity sGRB-GW counterparts long before GW170817





### 



Goldstein et al. 2017

### GRB 170817A Geometry

![](_page_3_Figure_1.jpeg)

![](_page_3_Picture_2.jpeg)

# **GRB 170817A Spectral Components**

![](_page_4_Figure_1.jpeg)

![](_page_4_Figure_2.jpeg)

**Veres et al. 2018** 

![](_page_4_Picture_4.jpeg)

![](_page_4_Picture_5.jpeg)

![](_page_4_Picture_6.jpeg)

![](_page_5_Figure_1.jpeg)

- The third closest SGRB with known redshift GRB 150101B

- Suggests that the soft tail is common, but generally undetectable in more distant events
- See also Troja et al. 2018 on GRB 150101B
- See also von Kienlin et al. 2019 for additional candidate events

### **GRB 150101B**

![](_page_5_Figure_10.jpeg)

 Very hard initial pulse with E<sub>peak</sub> =1280±590 keV followed by a soft thermal tail with kT~10 keV • Unlike GRB 170817, 150101B was not under luminous and can be modeled as an on-axis burst Thermal tail can be explained as GRB photosphere, but degeneracy with the cocoon model still exists

![](_page_5_Picture_14.jpeg)

![](_page_5_Picture_15.jpeg)

## Sub-Threshold GBM-GW Searches

1. Untargeted search - blind search for sub-threshold GRB candidate events (~80/yr; for more details see Kocevski et al. 2018, ApJ, 862, 152)

2. Targeted search - coherent search of all detectors using input event time and optional skymap (for more details see Goldstein et al., arXiv:1612.02395)

**Ideal Scenario** Bright GRB Loud GW Sub-threshold GRB Loud GW Weak GRB Sub-threshold GW **Typical distant short GRB** Bright GRB Sub-threshold GRB Sub-threshold GW **Both Sources Faint** 

![](_page_6_Figure_4.jpeg)

- Was GRB 170817A lucky?
- Is there a huge population of faint nearby sGRBs?
- How well can the current fleet of GRB instruments do?
- How can we do better?

# **GRB-GW Prospects**

#### GRB 170817A Detectability

![](_page_7_Figure_7.jpeg)

![](_page_7_Picture_8.jpeg)

# **GRB-GW Prospects**

- Coincident GRB provides more than astrophysics, but also joint localization and detection, increasing capability
- On-axis events have stronger GW signals
- GRB provides trigger time and rough sky localization, allows GW search window to be smaller, and therefore more sensitive given trials

| Instrument      | Year  | Frequency Range   | BNS Range            | BNS Rates ( |
|-----------------|-------|-------------------|----------------------|-------------|
| GEO600          | 1995- | ~150-3000 Hz      |                      |             |
| Advanced LIGO   | 2015- | $\sim$ 20-1000 Hz | 173 Mpc              | 0 (O1; 2015 |
| Advanced Virgo  | 2016- | $\sim$ 20-1000 Hz | 125 Mpc              | 1 (O2; 2017 |
| KAGRA           | 2019+ | $\sim$ 20-700 Hz  | 140 Mpc              | 4-80 (202   |
| LIGO-India      | 2024+ | $\sim$ 20-1000 Hz | 173 Mpc              | 11-180 (20  |
| Advanced LIGO+  | 2025+ | ~20-1000 Hz       | 325 Mpc              | >100        |
| Advanced Virgo+ | 2025+ | $\sim$ 20-1000 Hz | 215 Mpc              |             |
| LIGO Voyager    | 2028+ | ~10-5,000 Hz      | $\sim 1 \text{ Gpc}$ | >1,00       |

#### Burns et al. 2019 (arXiv:1903.04472)

![](_page_8_Figure_6.jpeg)

![](_page_8_Picture_7.jpeg)

# **Gravitational Wave Counterparts**

- GRB localization acts as an additional interferometer in GW network for localization
  - Especially important for 1 or 2 interferometer localizations
  - GBM localization provided within seconds of detection
- Joint localizations with LIGO are going to be provided automatically in O3

![](_page_9_Figure_5.jpeg)

180°

### Status of the Current GRB-detecting Fleet

|                                                                   | Year<br>Launched | Energy Coverage   | Field of View x Duty Cycle<br>(% of sky) | sGRB Rate<br>(yr <sup>-1</sup> ) |  |  |
|-------------------------------------------------------------------|------------------|-------------------|------------------------------------------|----------------------------------|--|--|
| <b>KONUS-Wind</b>                                                 | 1994             | 20 keV - 15 MeV   | 95%                                      | 18                               |  |  |
| <b>INTEGRAL SPI/ACS</b>                                           | 2002             | 80 kev - 10 MeV   | 100%                                     | ~30                              |  |  |
| Swift-BAT                                                         | 2004             | 15-150 keV        | 15%                                      | 10                               |  |  |
| Fermi-LAT                                                         | 2008             | 30 MeV - >300 GeV | 20%                                      | ~1                               |  |  |
| Fermi-GBM                                                         | 2008             | 8 keV - 40 MeV    | 60%                                      | 40-80                            |  |  |
| CALET-CGBM                                                        | 2014             | 7 keV - 20 MeV    | 25%                                      | ~3-6                             |  |  |
| AstroSat-CZTI                                                     | 2015             | 10-150 keV        | 1%                                       | ~3                               |  |  |
| Insight-HXMT                                                      | 2017             | 0.2-3 MeV         | 60%                                      | ~5-10                            |  |  |
| Other gamma-ray monitors that are part of IPN: Odyssey, Messenger |                  |                   |                                          |                                  |  |  |

Lots of other instruments/observatories to follow-up afterglows (both on/off axis) and kilonova

# Next Generation GRB Detectors

- Capabilities needed for GW-GRB science in the next decade?
  - All-sky coverage
  - Sensitivity to weak GRBs
  - Rapid notification
  - degree-scale (or better) localizations
  - Wide gamma-ray energy band
  - Rapid multi-wavelength follow-up observations
- Considerations
  - all on one platform or distributed
  - dedicated GRB mission or broadly capable
  - \$€£¥₩

ed adly capable

![](_page_11_Picture_13.jpeg)

# Next Generation GRB Detectors

- Missions you'll hear about at this meeting:
  - Network of SmallSats
  - BurstCube
  - Glowbug see Matthew Kerr's talk Thursday
  - Moonbeam
  - Bia
  - Nimble
  - TAP
  - AMEGO

- Other missions
  - SVOM
  - THESEUS
  - Einstein Probe
  - Athena
  - + others

## A Global Network of GRB SmallSats

- Build many small detectors distributed in different orbits to observe the whole sky for rare events
- Potential for joint localization?
- Lots of interest in distributed GRB SmallSat network "Towards a Network of GRB Detecting Nanosatellites" Conference in September 2018 https://asd.gsfc.nasa.gov/conferences/ grb\_nanosats/index.html
  - Projects in development all over world
  - Low cost access to space via Ride Shares
- Potential downsides short missions, typically lacks rapid communications, different types of detectors, small detectors

![](_page_13_Figure_9.jpeg)

![](_page_14_Picture_0.jpeg)

## BurstCube

**PI: Jeremy Perkins (NASA/GSFC)** 

- 6U CubeSat currently in design and prototyping phase
- Instrument:
  - Four 9 cm diameter Csl scintillating crystals read out by low-power SiPM arrays
  - Energy band 30-1000 keV
- Rapid Communications will send GRB alerts and localization to community within minutes
- Complement existing GRB-detecting instruments
- Launch ready in late-2021
- 6 month mission, 1 year goal

![](_page_14_Picture_11.jpeg)

![](_page_14_Figure_12.jpeg)

![](_page_14_Figure_13.jpeg)

![](_page_14_Picture_14.jpeg)

![](_page_14_Picture_15.jpeg)

- SmallSat ESPA ring Ride Share
- In development for proposing to upcoming NASA Mission of Opportunity call in Summer 2019
- Larger version of BurstCube Csl + SIPM detectors with 7 on each of 2 spacecrafts
- Energy range 30 keV 2 MeV
- Potential to detect 80-150 short GRBs per year
- Rapid communications and localizations to enable follow-up observations
- More sensitive than Fermi-GBM, with all-sky coverage
- Launch in 2024/2025
- 2 year mission (5 year goal)

#### Bia **PI: Judy Racusin (NASA/GSFC)**

![](_page_15_Picture_13.jpeg)

![](_page_15_Picture_16.jpeg)

![](_page_15_Picture_17.jpeg)

![](_page_15_Picture_18.jpeg)

![](_page_15_Picture_19.jpeg)

![](_page_16_Picture_0.jpeg)

### MoonBEAM **Moon Burst Energetic All-sky Monitor**

12U CubeSat concept of deploying gamma-ray detectors in cislunar orbit.

#### **Mission Goals**

- Detect short gamma-ray bursts associated with gravitational wave events to study astrophysical jets and probe fundamental physics from neutron star merger events.
- Improve localization to enable faster afterglow detection to study kilonova evolution and the origin of heavy elements.

![](_page_16_Figure_7.jpeg)

![](_page_16_Figure_8.jpeg)

GW170817 and GRB 170817A localization contours, an example annulus for an intermediate bright burst at 45° baseline angle.

![](_page_16_Figure_11.jpeg)

#### **PI: Michelle Hui (NASA/MSFC)**

#### **All-sky Coverage**

- By deploying MoonBEAM in cislunar orbit, there will be minimal Earth blockage and no downtime due to the South Atlantic Anomaly.
- Based on detector area and sky coverage, expected detection rate of 30-40 short GRBs/year.

#### **Improved Localization**

- Up to 2.1s time difference when paired with a detection from Low Earth Orbit.
- Capable of reducing localization area by >50% for an average short GRB with a 45deg baseline using time-of-flight method.

*Left*:  $1\sigma$  annulus width for short GRBs with different intensities. Most bright GRBs will be localized to sub-degree width.

![](_page_16_Figure_20.jpeg)

![](_page_16_Figure_21.jpeg)

![](_page_16_Picture_22.jpeg)

![](_page_17_Picture_0.jpeg)

![](_page_17_Figure_1.jpeg)

- In development for proposing to upcoming NASA SMEX call in Summer 2019
- Science goals:
  - Detect gamma-ray and UV/optical/IR GW counterparts
  - Characterize exoplanet atmospheres
- Instruments
  - High-energy All-Sky Monitor (HAM)
    - Gamma-ray scintillator (GBM/BurstCube-like)
  - Small UV Optical IR telescope (SUVOIR)
    - Wide-field blue optical telescope for finding transients Narrow field telescope with UV/Optical and Optical/IR channels with filters and grism to provide broadband photometry and low-
    - resolution spectroscopy
- Sun-synchrotronous low-Earth orbit rapid slewing and autonomous follow-up of HAM triggers or uploaded targets (e.g. GW localizations)
- Launch 2025
- 2 year mission (5 year goal)

## Nimble

**PI: Josh Schlieder (NASA/GSFC)** 

![](_page_17_Picture_18.jpeg)

![](_page_18_Picture_0.jpeg)

# Transient Astrophysics Probe (TAP)

**PI: Jordan Camp (NASA/GSFC)** 

- Awarded one of the 2017 NASA Probe Concept Studies
  - To be submitted to 2020 Decadal Survey
- 4 Instruments
  - Wide Field Imager (WFI)
  - X-ray Telescope (XRT)
  - optical/Infrared Telescope (IRT)
  - Gamma-ray Transient Monitor (GTM)
- Rapidly slewing spacecraft will autonomously detect and follow-up transients and variable sources, and conduct allsky survey
- L2 orbit with 85% of sky viewable at any time
- Launch in late-2020's
- 5 year mission (10 year goal)
- For more information: <u>https://asd.gsfc.nasa.gov/tap/</u>

![](_page_18_Picture_16.jpeg)

![](_page_18_Figure_22.jpeg)

Gravitational Wave Frequency (Hz)

![](_page_18_Picture_24.jpeg)

![](_page_19_Picture_0.jpeg)

### All-sky Medium Energy Gamma-ray Telescope (AMEGO)

- NASA Probe mission concept to be submitted to US Decadal Survey
- Double-sided silicon strip tracker, CZT & Csl calorimeters, ACD
- 200 keV 10 GeV
- Compton & Pair Telescope viewing ~20% of sky surveying entire sky over 2 orbits (like Fermi-LAT)
- Many sources have peak spectra in MeV band (AGN, pulsars, GRBs) – sensitive instrument needed to understand emission processes
- If GW-GRBs are under-luminous, AMEGO will be far more sensitive than scintillator instruments
- Launch in late 2020's
- 5 year mission (10 year goal)
- https://asd.gsfc.nasa.gov/amego/

#### **PI: Julie McEnery (NASA/GSFC)**

![](_page_19_Figure_13.jpeg)

![](_page_19_Figure_14.jpeg)

![](_page_19_Figure_15.jpeg)

![](_page_19_Picture_16.jpeg)

## **Current & Future Missions**

![](_page_20_Figure_1.jpeg)

![](_page_20_Figure_3.jpeg)

Instruments energy band vary from soft X-ray to medium energy gamma-ray

![](_page_20_Picture_5.jpeg)

![](_page_20_Picture_6.jpeg)

### **Coordinating Multi-Messenger Observations**

- automated methods and systems
  - Advanced computational techniques
  - Dedicated cross-correlation platforms

• As more instruments/missions/datasets need to be correlated, need more

![](_page_21_Picture_6.jpeg)

## **Time Domain Astronomy Coordination Hub (TACH)**

- New initiative at NASA Goddard to build upon existing community resources to address the needs of the multi-messenger/multiwavelength transient deluge coming in the next decade • Improvements to GCN (add reliability with mirror sites, improved
  - coincident source searches)
  - New realtime HEASARC database that ingests GCN & other public data streams to easily cross-correlate and be queryable by community
  - Provide infrastructure to do joint localizations with multiple GRBdetecting satellites
- How can TACH help serve our community? • How can TACH complement efforts like VO?

![](_page_23_Figure_1.jpeg)