IceCube Neutrinos from the Local Universe using 2MRS

Steve Sclafani for the IceCube Collaboration CEDTEXENTIAL

March 28, 2019

2019-03-28

Analysis

S. Sclafani

New Era in Multi-Messenger Astrophysics

2019-03-28

IceCube

- IceCube has identified astrophysical neutrinos; presented evidence for one neutrino source.
- Still searching for sources of most of the astrophysical neutrino flux.
- Can look for neutrinos from stacking cosmic ray accelerators (blazars, SNR, etc.)
- But also can look for neutrinos from secondary Cosmic Ray interactions in interstellar media.

Analysis 0000000000

Galactic Plane in IceCube

- Gamma ray sky is dominated by Galactic Plane
- π^0 template follows gas and models some emission from CR interactions with interstellar medium
- IceCube has looked for signatures of these secondary interactions in neutrinos through spatial template analyses, such as Galactic Plane Template

• eg:
$$\pi^0 \rightarrow 2\gamma, \pi^+ \rightarrow \nu_\mu + e^+ + \nu_e + \bar{\nu_\mu}$$

IceCube - arXiv:1808.03531

Galaxy Density Hypothesis

- While galactic plane is a large feature, the same interactions should be happening in other galaxies too.
- Single galaxy contribution is small, but combined effect may be seen in IceCube (stacking).
- Goal: Produce a template of the local matter density, the target for these CR interactions
- Local Universe is anisotropic, can look for overfluctions in neutrinos coincident with overdensities in galaxies
- Correlation with close large scale features supergalactic plane

Analysis
000000000000000000000000000000000000000

2MRS Survey Background

- 2MRS (2MASS Redshift Survey) maps position, magnitude and redshift for closest 45,000 galaxies
- Use redshift information as a template for local matter density and large scale structure

Huchra et al. (2012), ApJS Vol 199

Templates

- Spatial Templates:
 - ► Full Catalog; Weighted by Redshift Distance
 - Full Catalog; Equal Weighting
 - Cutoff of Redshift <0.03; Equal Weighting</p>

Spatial PDFs

Figure: Galaxy Density weighted by z

S. Sclafani	New Era in Multi-Messenger Astrophysics	2019-03-28
IceCube Neutrinos using 2MRS		8 / 16

Spatial PDFs

Figure: Galaxy Density for Full Catalog; Equal Weighted

S. Sclafani	New Era in Multi-Messenger Astrophysics	2019-03-28
IceCube Neutrinos using 2MRS		8 / 16

Spatial PDFs

Figure: Galaxy Density for z < 0.03

S. Sclafani	New Era in Multi-Messenger Astrophysics	2019-03-28
IceCube Neutrinos using 2MRS		8 / 16

Analysis 000000000000

Spatial PDF Construction

S. Sclafani

IceCube Neutrinos using 2MRS

New Era in Multi-Messenger Astrophysics

2019-03-28

Spatial PDF Construction

Figure: Gaussian Smoothing (1°)

Figure: Gaussian Smoothing (2°)

	~1	-	-	
0	LI	aı	a	

IceCube Neutrinos using 2MRS

New Era in Multi-Messenger Astrophysics

2019-03-28

10 / 16

Test Statistic Methods

$$\mathcal{L}(n_s) = \prod_{i=1}^{N} \left(\frac{n_s}{N} S_i(\mathbf{x}_i, \sigma_i, E_i) + (1 - \frac{n_s}{N}) B_i(sin\delta, E_i) \right)$$

Data:

$$\tilde{D}_i(\sin \delta_i, E_i) = \frac{n_s}{N} \tilde{S}_i(\sin \delta_i, E_i) + (1 - \frac{n_s}{N}) B_i(\sin \delta_i, E_i)$$

Modified LLH:

$$\mathcal{L}(n_s) = \prod_{i=1}^{N} \left(\frac{n_s}{N} S_i(\mathbf{x}_i, \sigma_i, E_i) + \tilde{D}_i(\sin \delta_i, E_i) - \frac{n_s}{N} \tilde{S}_i(\sin \delta_i, E_i) \right)$$
$$TS = -2 \ln \left[\frac{\mathcal{L}(n_s = 0)}{\mathcal{L}(\hat{n}_s)} \right]$$

 Spatial PDF component from template maps, Energy PDF based on 2D Signal and Background histograms

S. Sclafani

IceCube - arXiv:1707.03416

Sensitivity and Discovery Potential

Inject Signal Monte Carlo to calculate Sensitivity and Discovery Potential

- ▶ Define Sensitivity at point where 90% of trials above median
- Define Discovery Potential at point where 50% of trials above 5σ TS

Townslate	Sensitivity Flux (1TeV)	% of IceCube	Discovery Potential Flux (1TeV)
Template	$(\text{GeV}^{-1}\text{s}^{-1}\text{cm}^{-2})$	Astrophysical Flux	$(GeV^{-1}s^{-1}cm^{-2})$
Full Catalog	2.74×10^{-18}	23%	12.81×10^{-18}
z <0.03	2.26×10^{-18}	19%	8.98×10^{-18}
Weighted by Redshift	1.90×10^{-18}	17%	7.77×10^{-18}

S. Sclafani

New Era in Multi-Messenger Astrophysics

2019-03-28

IceCube Neutrinos using 2MRS

13 / 16

Results

Template	Weighted	z <0.03	Full Catalog
TS	0.0	0.0	0.0
ns	0.0	0.0	0.0
Pre-trials	1.0	1.0	1.0
Post-trials	-	-	-

- Best fit $n_s = 0$ (Under Fluctuation)
- 0.33 of trials results in ns=0 in each

S. Sclafani

Flux Limits - Redshift Distance weighted

Conclusion

- Can use this model to set limits on models of neutrino production in local galaxies
- Looking at galaxy density as a template allows for general local searches for neutrinos produced through CR interactions.
- Results were consistent with background.
- \blacksquare Paper incoming on this work combined with a colleague also looking at 2MRS / IceCube
- Method can be extended for other deeper or more complete surveys.
- Extra attention must be placed on other surveys with non-homogeneous coverage.