Searches for counterparts of Gravitational Waves with VHE gamma-ray observatories

Monica Seglar-Arroyo IRFU-CEA Saclay & PSU

March 25, 2018, Groningen

Observing the VHE sky with gamma-rays

Particle detector, 4-5 km a.s.l.

IACTs, 1-2 km a.s.l.

Figure from <u>arXiv:1902.0842</u>

Current instruments observing the VHE sky with gamma-rays

Particle detector, 4-5 km a.s.l.

IACTs, 1-2 km a.s.l.

MAGIC

	IACT Arrays	Ground-parti
Field of view	$3^\circ ext{} 10^\circ$	90°
Duty cycle	10% – 30%	>959
Energy range	$30~{\rm GeV}-{>}100~{\rm TeV}$	$\sim 500~{\rm GeV}$ –
Angular resolution	$0.05^{\circ} - 0.02^{\circ}$	$0.4^{\circ}-0$
Energy resolution	${\sim}7\%$	60%-2
Background rejection	> 95%	90% - 99

HAWC

VERITAS

HESS

Figure from <u>arXiv:1902.0842</u>

Potential EM counterparts to NSNS/NSBH

Metzger and Berger, 2012

• Recently: First detection of a GRB by an IACT!

First time detection of a GRB at sub-TeV energies; MAGIC detects the GRB 190114C

ATel #12390; Razmik Mirzoyan on behalf of the MAGIC Collaboration on 15 Jan 2019; 01:03 UT Credential Certification: Razmik Mirzoyan (Razmik.Mirzoyan@mpp.mpg.de)

Subjects: Gamma Ray, >GeV, TeV, VHE, Request for Observations, Gamma-Ray Burst

Referred to by ATel #: 12395, 12475

🈏 Tweet

The MAGIC telescopes performed a rapid follow-up observation of GRB 190114C (Gropp et al., GCN 23688; Tyurina et al., GCN 23690, de Ugarte Postigo et al., GCN 23692, Lipunov et al. GCN 23693, Selsing et al. GCN 23695). This observation was triggered by the Swift-BAT alert; we started observing at about 50s after Swift T0: 20:57:03.19. The MAGIC real-time analysis shows a significance >20 sigma in the first 20 min of observations (starting at T0+50s) for energies >300GeV. The relatively high detection threshold is due to the large zenith angle of observations (>60 degrees) and the presence of partial Moon. Given the brightness of the event,

Gravitational Wave Follow-up Challenges

• Attenuation of VHE emission is almost negligible at the expected BNS range, even at design sensitivities

• GW sky localizations can cover large area in the sky due to the detection technique

50%-90% credible regions of sky localisations of confidently detected O2 GW events (from <u>GWTC-1</u>)

Abbott, B.P., Abbott, R., Abbott, T.D. et al. Living Rev Relativ (2018) 21:3

See C.Hoischen talk on 'The H.E.S.S. transients alert system'

GW Follow-up of Air Shower Arrays

HAWC \bigcirc

- Inst. FoV of 2sr(1/6 sky) \bigcirc
- 95% uptime \bigcirc
- Energy range: 0.1-100 TeV 0

• Real time all-sky GRB search

- Spatial grid 2.1°x2.1° \bigcirc
- Temporal intervals: 0.1,1,10,100s \bigcirc
- Sliding window of 10% \bigcirc

Wood, J. (2018) arXiv:1801.01550

HAWC Half-Decade sensitivity to 1s bursts

Martinez-Castellanos for the HAWC collaboration

TeV counterpart searches to Gravitational Waves

GW151226 (BBH) MAGIC

01

- 90% C.R. ~1400 deg²
- Manually selected regions with info from EM follow-up group.
- Total of 2.6h, ~65.5after the GW event

No significant excess found.

<u>De Lotto, B., et al (2016)</u>

HAWC

No significant excess found.

- pointings.
- 27% of the sky localization covered • With better weather conditions, observation would have been sensitive to sources with a flux greater than 50% of the Crab Nebula above 100 GeV

No significant excess found.

GW170104 (BBH) VERITAS

• 21 hours after the GW event • 39 consecutive 5 minutes tiling

GCN circular 21153

O2

HAWC

No significant excess found.

Martinez-Castellanos et al, 2018

GW170814 (BBH) O2H.E.S.S

- 3 IFO localisation: with V1, 60 deg²
- 3 consecutive nights of observation covering the localization No significant excess found.

MS et al, TeVPa 2018

GeV-TeV counterpart searches to Gravitational Waves

• GW170817/ GRB170817A

- First observation of BNS+sGRB
- Through multi-messenger efforts, the source could be identified!
- Counterpart located in galaxy NGC 4993
- <u>First evidence</u> of a population of NS-NS mergers responsible for sGRBS
- Further details: <u>Astrophys. J. Lett 848.2</u>
 (2017): L12.

What was observed in VHE?

GW170817 follow-up in IACTs

HESS prompt observations of GW170817

- First ground based instrument on target! 5.3 hours after merger
 - 5 minutes after the update of the GW skymap (LV reconstruction)

The Astrophysical Journal Letters, 850:L22 (9pp)

Alexander et al. (2018)

GW170817 follow-up in Air Shower Arrays

HAWC prompt observations of GW170817

- Source localization enter the HAWC FoV 9 hours after merger: observed for 2.03 h
- Localization at high zenith angles:
 - High energy threshold
 - Poor sensitivity
- 90 C.I upper limit between 4-100 TeV of 1.7 x 10⁻¹⁰erg cm⁻² s⁻¹

HAWC long term follow-up observations of GW170817

- Flux limits derived above 40 TeV over 9 consecutive logarithmic time windows.
- The limits are above the VHE flux expected for SSC from the external shock.

Dichiara et al, TeVPA 2018

ring	<u>the</u>	non-
3		

11

Prospects

 Number of estimated detections grow with the cube of the improvement on the BNS range!

• Sky localization will get smaller when approaching design sensitivity

Epoch			2015-2016	2016-2017	2018-2019	2020+	2024+
90% CR	% within	5 deg ²	< 1	1–5	14	3–7	23-30
		$20 \ \mathrm{deg}^2$	< 1	7–14	12-21	14–22	65–73
	Median/deg ²		460-530*	230-320	120-180	110-180	9–12
			2019+				
	HLV					HIL	
60°N	F. C. C. C.	×	A CONTRACTOR		60°N	Part of	Maker -
°N			1995 C	30°N⁄			Mere .
	Some I Philip			0°	1		1 2 . 6
			Start /				
°S			Jal .	30°S\	<i></i>		
60°5		00			60°5		<u>.</u>
	and the second second						

Abbott et al. 2016, Living Reviews in Relativity, 19

Starting April 2019! O3!

Epoch		2015-2016	2016-2017	2018-2019	2020+	2024+
Planned run duration		4 months	9 months	12 months	(per year)	(per year)
Expected BNS range/Mpc	LIGO	40-80	80–120	120–170	190	190
	Virgo	_	20–65	65-85	65-115	125
	KAGRA	_	-	-	-	140
Estimated BNS detections		0.05 - 1	0.2–4.5	1-50	4-80	11-180
Actual BNS detections		0	1	_?	_	_

Abbott, B.P., Abbott, R., Abbott, T.D. et al. Living Rev Relativ (2018) 21:3

- \star O1 two-detector network
- \star LIGO at design sensitivity
- ★ 3 IFO at sensitivity O2 (expected)
- \star 3 IFO at design sensitivity

*face-on binary BNS system at 160 Mpc

Next generation IACTs: CTA

5-300 TeV

Next generation combined: Large High Altitude Air Shower Observatory (LHAASO)

Completion of LHAASO construction expected for 2020

LHAASO* Sichuan, China, 4410 m asl

5195 Scintillators

- 1 m² each
- 15 m spacing

1171 Muon Detectors

- 36 m² each
- 30 m spacing

3000 Water Cherenkov Cells - 25 m² each

12 Wide Field Cherenkov Telescopes

Nuclear Physics B Proceedings Supplement 00 (2016) 1–8

Next generation wide FoV projects: SGSO

- BASIC IDEA: higher, larger, denser!
 - 5000 m. a.s.l.
 - Southern sky
 - Sparse Array: 1000 units covering 221.000 m²
 - Dense array: 4000 units covering 80.000 m²
- Goal: Order of magnitude higher sensitivity than current generation instruments like HAWC

All figures from <u>SGSO white paper</u>

Prospects

Back up

Sensitivity vs. time in current IACTs

Holler, M. et al, ICRC 2015

Aleksic et al. (2014)

CTA: Prospects on GW Follow-ups

• Sensitivity simulations:

- **GWCosmos** simulations for the source location and GW sky localisation
- GRB 090510 as prototype as it should VHE extended emission
- On axis GRB 10^o
- Assume power-law + cutoff at 30 GeV and 100 GeV
- Pointing duration = ΔT for 5σ detection at t_i

• Prospects

$E_{\rm iso}$ (ergs)	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$	% of events Obs. region = 90%	% of events Obs. region $\geq 50\%$
10^{49}	$\begin{array}{c} 30 \\ 100 \end{array}$	$< 1 \\ 1.5$	< 1 1.9
10^{50}	$\begin{array}{c} 30 \\ 100 \end{array}$	$\begin{array}{c} 8.8\\ 18.0 \end{array}$	$12.2 \\ 28.8$
10^{51}	$\begin{array}{c} 30 \\ 100 \end{array}$	$59.7 \\ 73.0$	$74.5 \\ 85.1$
$3.5{\times}10^{52}$	$\begin{array}{c} 30 \\ 100 \end{array}$	99.9 99.9	100 100

- Extra factors may come from
 - Considering moonlight observations (~2)
 - Higher NS-NS merger rates (~6)
 - Sub-arrays definition
 - Use of galaxy distribution

Patricelli et al. 2018, JCAP, 5, 56