Search for High Energy Neutrinos from Populations of Optical Transients

Asterics Multi-Messenger Conference

Robert Stein For the IceCube Collaboration

HELMHOLTZ Young Investigators

What do we know after a decade of IceCube?

• There is a diffuse flux of astrophysical neutrinos

What do we know after a decade of IceCube?

- There is a diffuse flux of astrophysical neutrinos
- There is compelling evidence that the blazar TXS 0506+056 is a neutrino source
- At the same time, the cumulative flux of neutrinos from all Fermi blazars is limited to less than 30% of the total
- The remaining neutrinos have to come from somewhere else

What do we know after a decade of IceCube?

- There is a diffuse flux of astrophysical neutrinos
- There is compelling evidence that the blazar TXS 0506+056 is a neutrino source
- At the same time, the cumulative flux of neutrinos from all Fermi blazars is limited to less than 30% of the total
- The remaining neutrinos have to come from somewhere else
- Neutrino astronomy is difficult

Why is Neutrino Astronomy difficult?

Why is Neutrino Astronomy difficult?

Why is Neutrino Astronomy difficult?

IceCube Realtime Alerts

- High-purity neutrino filters identify neutrinos of likely astrophysical origin in realtime, then sent out via GCN to astronomers
- We search for counterparts, hoping for contemporaneous multi-wavelength observations of variable/transient sources
- IC170922A is an excellent example of this

IceCube Realtime Alerts

- High-purity neutrino filters identify neutrinos of likely astrophysical origin in realtime, then sent out via GCN to astronomers
- We search for counterparts, hoping for contemporaneous multi-wavelength observations of variable/transient sources
- IC170922A is an excellent example of this
- ADVERTISEMENT: New IceCube Alerts V2 will soon be online. More, purer, simpler alerts!

IceCube Realtime Alerts

- High-purity neutrino filters identify neutrinos of likely astrophysical origin in realtime, then sent out via GCN to astronomers
- We search for counterparts, hoping for contemporaneous multi-wavelength observations of variable/transient sources
- IC170922A is an excellent example of this
- ADVERTISEMENT: New IceCube Alerts V2 will soon be online. More, purer, simpler alerts!
- However, we expect many neutrinos to come from unresolved sources. For example, of CCSNe neutrinos, only 20% are expected to come from "detectable counterparts".

Fig. 6. Cumulative fraction of astrophysical neutrino sources with a single high-energy neutrino detection in IceCube, accumulated as a function of source redshift, assuming they follow the SFR (Madau & Dickinsor 2014) given standard cosmology. The redshift of PS16cgx is marked with a vertical line. The maximum distance ranges where a normal Type Ic (squares) and Type Ic-BL (circles) SNe can be detected in rise are indicated assuming negligible line-of-sight extinction, ignoring *K*-corrections, and adopting 1σ distribution of the SN peak magnitudes, for image depths of 22.5 and 25 mag (white and grey symbols, respectively).

https://arxiv.org/pdf/1901.11080

Leveraging the lower-energy neutrinos

- "Stacking analyses" are used to identify neutrino emission from a population.
- Search for cumulative neutrino emission from many sources, rather than needing one bright individual source.
- The central problem in neutrino astronomy is "too much background". Knowing where and when to look can help us!
- We need good multi-messenger observations to constrain search windows.
- We can access the many lower-energy neutrinos, enabling statically-significant statements on populations.

What are Tidal Disruption Events?

But what is a TDE? And what is not?

Nuclear Transients

But what is a TDE? And what is not?

Stacking analyses rely on the assumption that the sample is not contaminated.

Robust TDE classification requires multi-epoch spectroscopy + photometry

Only ~a dozen non-jetted TDEs meet this requirement, and 3 jetted TDEs, out of ~60 "TDE candidates" in the literature.

Makes rate estimation extremely difficult!

Constraints on TDE neutrino emission

Constraints on TDE neutrino emission

Neutrinos from Supernovae

Neutrinos from Supernovae

The universe has surprises in store for us!

Extraordinary fast bright blue transient. Potential nearby example "FBOT", candidate TDE

Latest IceCube results...

(Time-integrated emission in 130-day window)

DESY. | Neutrinos from Optical Transients | Robert Stein | Asterics Multi-messenger Conference 2019

How can multi-messenger observations help?

- Discover more transients!
 - Better limits with more sources
- Better light curves.
 - High cadence observations can greatly reduce background.
- Reliable classification.
 - TDE study limited by small 'contamination-free" sample
- Better rate estimation
 - Deeper surveys constrain evolution, untargeted surveys more complete.

Summary

- An identified neutrino source population remains elusive
- Transients provide an opportunity for searches with muchreduced background.
- No significant neutrino emission found from TDEs, as well as CCSNe.
- Multi-messenger observations are key to reducing uncertainty in limits, and more sensitive analysis.
- New surveys such as ZTF, and upcoming surveys such as LSST, mean multi-messenger datasets available will improve dramatically in the near future

